Evaluating Lazy and Non-Lazy Execution Strategies in Spark
for Big Data Processing Optimization

Thi-Thu-Trang Do
'Faculty of Information Technology
Hung Yen University of Technology and
Education, Hungyen
Vietnam
trangdtt@utehy.edu.vn

Manh-Hung Ngo
Vinacomin Mining Chemical Industry
Holding Corporation Limited

Thi-Thuy-Linh Tong
Faculty of Information Technology
Hung Yen University of Technology and
Education, Hungyen
Vietnam
thuylinh1432012@gmail.com

Van-Quyet Nguyen*
Faculty of Information Technology
Hung Yen University of Technology and

Viet-Anh Nguyen
Faculty of Information Technology
Hung Yen University of Technology and
Education, Hungyen
Vietnam
vietanhtvym@gmail.com

Quyet-Thang Huynh
2School of Information and Communication
Technology, Hanoi University of Science

Hanoi, Vietnam Education, Hungyen and Technology
hungnm@micco.com.vn Vietnam Hanoi, Vietnam
quyetict@utehy.edu.vn thanghq@soict.hust.edu.vn

ABSTRACT

This study investigates the impact of lazy and non-lazy
execution strategies on the performance of big data processing in
Apache Spark. We evaluate various Spark operations, comparing
their performance under execution strategies using real-world and
synthetic datasets. The evaluation emphasizes the importance of
matching execution strategies to workload characteristics, data
volumes, and query complexity to optimize execution time and
resource utilization. Through ten scenarios, the experimental
results show that lazy execution, while reducing redundant
computations, can be inefficient in frequent iterative or memory-
bound tasks. In contrast, non-lazy execution performs better in
immediate and incremental computations but incurs higher
overhead with overlapping transformations or shared intermediate
results. These findings underline the need for a hybrid strategy
tailored to workloads, offering actionable guidance for optimizing
Spark applications.

KEYWORDS

Lazy Evaluation, Non-Lazy Evaluation, Execution Optimization,
Data Processing Strategies, Big Data Processing.

1. INTRODUCTION

Apache Spark is a leading platform for big data analytics, valued
for its efficient in-memory processing. A key factor influencing its
performance is the evaluation mechanism, specifically the choice
between lazy and non-lazy evaluation. Lazy evaluation defers
transformations until an action is triggered, enabling global
optimization and reducing redundant computations but
complicating debugging and predictability. Conversely, non-lazy
evaluation processes transform immediately, offering simpler
execution but missing optimization opportunities, potentially
leading to inefficient resource use. Choosing the appropriate
evaluation strategy is critical for optimizing Spark’s performance.

However, comparing these strategies is challenging due to the
complexity of Spark’s Directed Acyclic Graph (DAG) optimization
and variations in workload characteristics. These challenges
underscore the need for a detailed empirical analysis to understand
their impact under different conditions.

Previous research has predominantly focused on the benefits of
lazy evaluation, emphasizing its role in optimizing execution plans
through deferred computation, as shown in studies by Zaharia et al.
[1] and Armbrust et al. [2]. These works illustrate how lazy
evaluation minimizes redundant processing via DAG construction
before execution. However, detailed analysis of non-lazy (eager)
evaluation is limited, with most literature highlighting its advantage
in immediate feedback for real-time analytics and interactive
queries [3]. While practical guides, such as those by Karau and
Warren [4], briefly mention non-lazy contexts, there is a lack of
systematic empirical comparisons. Our study indicates a need for a
detailed assessment of the trade-offs between lazy and non-lazy
evaluation across diverse workloads.

The contributions of our paper are as follows:

e Presenting a comprehensive performance analysis of lazy and
non-lazy execution strategies in Spark, addressing gaps in the
literature with empirical evidence rather than theoretical
discussions.

o Evaluating performance through ten experimental scenarios
using the real-world Stack Overflow dataset and five system
logs datasets. These scenarios cover various transformations
and actions, such as filtering, grouping, joining, and sequential
operations.

e Providing practical recommendations for selecting the most
appropriate evaluation strategy, considering workload
characteristics, data volumes, and query complexity to
improve the efficiency and performance of Spark applications.

The rest of this paper is structured as follows: Section 2
compares execution strategies in Spark, emphasizing the

SMA 2024 Conference Proceeding | 15

SMA 2024, Dec. 19-22, 2024, National University of Laos, Vientiane, Laos

mechanisms and key factors of lazy and non-lazy execution.
Section 3 describes the experimental setup, datasets, results, and
discussion. Section 4 concludes with key findings,
recommendations for optimizing Spark applications, and directions
for future research.

2. COMPARING EXECUTION STRATEGIES IN
SPARK

2.1 Lazy and Non-Lazy Evaluation

In Spark, the evaluation mechanism defines when and how data
computations occur, using two strategies: lazy and non-lazy
evaluation, each with unique characteristics and applications.

Lazy evaluation defers computation until an action like
collect() or count() is triggered. Transformations such as map() or
filter() are not executed immediately but added to a DAG
representing the logical workflow. This delay enables Spark to
optimize the DAG by combining transformations, minimizing data
movement, and avoiding unnecessary computations, leading to
faster execution and resource efficiency. However, debugging
becomes challenging since errors are only revealed during action

execution, complicating troubleshooting in complex workflows [5].

Non-lazy evaluation processes transform immediately as
defined, offering a clear and predictable execution flow. This
simplifies debugging by identifying errors at each step, reduces
latency, and suits real-time analytics. Additionally, caching
intermediate results enhances efficiency for repetitive tasks.
However, the absence of global optimization can cause redundant
computations and less efficient resource use in complex workflows
[6]. Figure 1 compares log data processing under Lazy and Non-
Lazy evaluation, showing differences in transformation and
execution approach.

Lazy Evaluation Non-Lazy Evaluation
Step1: Dataset Load Dataset Load
Dataset is loaded; no Dataset is fully
processing occurs loaded into memory
Step 2: Filter i Filter
Filter condition (Log_Level == Filters logs immediately,
‘ERROR") is added to the DAG creating a subset
Step 3: Group By Group By
Groups logs by date, Groups filtered logs, storing
deferred in the DAG intermediate results
Step 4: Count Transformation Count Transformation
Count operation is Counts grouped
added to the DAG data sequentially
. Action Triggered and
Steo: Optimized Execution Reswt
Execution starts with an action
(e.g, collect()), where Spark executes
transformations in an optimized pipeline.
Step: Result

Figure 1: Execution flow comparison of Lazy and Non-Lazy
evaluation.

2.2 Choosing between Lazy and Non-Lazy
Evaluation: Key Factors

Key factors affect the performance and efficiency of lazy and
non-lazy execution strategies selection as shown in Table 1. The
choice should consider workload complexity, optimization needs,
debugging ease, and resource constraints to achieve optimal
performance.

Table 1: Key Factors Affecting Performance and Efficiency
between Lazy and Non-Lazy Evaluation

. Non-Laz
Factors Lazy Evaluation . Y
Evaluation
Optimizes .
P Immediate
Workload | complex workflows .
. execution but lacks
Complexity but slower o
. global optimization.
debugging.
Data Recomputes Caches results,
transformations, efficient for repetitive
Reuse . .
increasing overhead. | tasks.
Efficient for
. . Handles frequent
Action fewer actions, .
. . actions but can
Frequency reducing execution | .
increase redundancy.
overhead.
Processes Handles full
Data subsets efficiently, | datasets better,
Volume saving resources. avoiding
recomputation.

3. EXPERIMENTS AND RESULTS

3.1 Environment Settings

Our experiments were deployed on a cluster with a master node
and two slaves. Each node has 8GB of RAM and 8 CPU cores. This
setup provided consistent conditions to compare the performance
of lazy and non-lazy evaluation strategies under diverse workloads.

3.2 Datasets

Two datasets were used to evaluate Spark execution strategies.
The first one is the Stack Overflow dataset, containing 2.78 GB of
real-world data with over 13 million records on posts, users,
comments, votes, and tags. It provides a comprehensive context for
testing complex queries involving joins, aggregations, and filtering
and is detailed in Table 2.

Table 2: Summary of Stack Overflow Dataset

Table Description Records
Name
Contains comments on posts,
comments | including creation date, score, and | 2,906,704
user details.
Stores main content of posts
posts (questions and answers) with | 2,623,637
associated metadata.
Lists tags used in posts, tracking
tags usage and linked wiki entries. 2,213,139

SMA 2024 Conference Proceeding | 16

The 13th International Conference on Smart Media and Applications

Table Description Records
Name
users Holds user _1nforrnat10n_,) such as 2,537,201
name, reputation, and activity
votes Records votes on posts, including 3,004,052
type and user data.

The second dataset is a synthetic system logs dataset created to
evaluate execution strategies across varying data sizes. Five subsets,
ranging from 2GB to 10GB, were generated to test common log
analysis tasks, including filtering, grouping, and saving, as detailed
in Table 3.

Table 3: Summary of System Logs Datasets

Dataset Records Size
DI 36,800,000 2GB
D2 73,600,000 4GB
D3 110,400,000 6GB
D4 147,200,000 8GB
D5 184,000,000 10GB

3.3 Experimental Scenarios

We conducted ten experimental scenarios to evaluate the
performance of the two execution strategies. Six scenarios, detailed
in Table 4, focused on workloads using the Stack Overflow dataset,
while four scenarios, presented in Table 5, examined workloads on
log analysis with the system logs dataset.

Table 4: Experimental Scenarios for Stack Overflow
Dataset

Experiment Description
Count posts and comments per user,
Exp-1 .
along with the average comment score.
Retrieve posts with over 10 comments
Exp-2
and an average comment score above 5.
Calculate the number of comments per
Exp-3
post.
Expod Identify users with upvotes and analyze
p their commenting activity.
Find users with over 100 posts, analyze
Exp-5 . .
post count, and retrieve profile details.
Analyze popular tags, calculate average
Exp-6 post scores, and retrieve user details for these
tags.
Table 5: Experimental Scenarios for System Logs Datasets
Experiment Description
Extract dates, filter ERROR logs, count
Exp-7 . .
daily errors, and display sorted results.
Group logs by date and level, calculate
Exp-8 : ..
counts, and display statistics.

Experiment Description
Filter ERROR logs, count by date and
Exp-9 level, identify high-error days, and save to
HDFS.
Exp-10 Extract, filter, count, compute totals, and
save logs to HDFS.

3.4 Experimental Results

Figure 2 illustrated the performance comparison between lazy
and non-lazy evaluations on the Stack Overflow dataset. We

P Llazy Evaluation CMon-Lazy Evaluation

180
156
160 -
— 140
T 120 i
~ 100 2
S ® - 7
§ e SLf:
S w Pl B B By
2 f o] : -]
7 % - Zﬂ %H
Exp-1 Exp-2 Exp-4 Exp-5

Experiments

Figure 2: Performance Comparison on Stack Overflow
Dataset

observe that lazy evaluation outperforms non-lazy evaluation in a
complex workflow (e.g., Exp-1) and simple workloads (e.g., Exp-
2 and Exp-3). By leveraging DAG optimization to minimize
redundant computations, lazy evaluation achieves performance up
to three times faster than non-lazy evaluation. In contrast, Exp-4,
Exp-5, and Exp-6, with straightforward workflows or frequent
reuse of intermediate results, demonstrate improved performance
under non-lazy evaluation. The reason is that these workloads used
immediate executions and cached results. Therefore, we can reduce
latency and eliminate the overhead of deferred computation.

Figure 3 demonstrated the performance comparison between
lazy and non-lazy evaluation on the system logs datasets. In Exp-7
and Exp-8, lazy evaluation achieves the average execution times
faster than non-lazy evaluation up to 2.2 times. In these
experiments, lazy evaluation optimizes data shuffling and
eliminates redundant computations. In contrast, non-lazy
evaluation exhibits superior efficiency in Exp-9 and Exp-10, where
its immediate execution reduces deferred computation overhead.
Notably, in Exp-10, as the data volume grows, non-lazy evaluation
demonstrates enhanced scalability, further improving its
effectiveness for sequential workflows with large datasets.

3.5. Discussion

SMA 2024 Conference Proceeding | 17

SMA 2024, Dec. 19-22, 2024, National University of Laos, Vientiane, Laos

B Lazy Evaluation

o el A1 9
@l g A1 9
® 5] é g é :

1 D5

Dataset
Exp-7: Count daily errors
350
300

250

t
E 200
5
S 150
5
&
& 100 72 72

50 %

0 "

D1 D2

Dataset

Exp-9: Analyze and save error logs

O Non-Lazy Evaluation

90
78

~
=

55

g

38

A 9
a0

g 85 38
1

Execution Time (s)

D3

Dataset

Exp-8: Count logs by date and level

Execution Time (s)

5 omoR R @ @ &
S W & o & &

8 & 8 & &8 & B

w
=]

Dataset

Exp-10: Evaluate execution series

Figure 3: Performance Comparison between Lazy and Non-Lazy Evaluation on the System Logs Dataset

The experimental results from Figures 2 and 3 highlight the
complementary strengths of lazy and non-lazy evaluation strategies,
providing practical guidance for optimizing Spark-based
applications. Lazy evaluation proves highly effective for complex
workflows by leveraging DAG optimization to minimize redundant
computations and data shuffling. This is evident in scenarios such
as Exp-1 and Exp-7, where lazy evaluation achieves execution
times up to three times faster than non-lazy evaluation. Even in
simple workloads such as Exp-2 and Exp-8, lazy evaluation
maintains an edge due to its optimization capabilities. Conversely,
non-lazy evaluation excels in workloads requiring immediate
feedback or frequent reuse of intermediate results. Scenarios such
as Exp-4 and Exp-9 benefit from their step-by-step execution,
avoiding the overhead of deferred computation. Additionally, non-
lazy evaluation demonstrates better scalability for sequential
workflows with large datasets, as shown in Exp-10. These findings
suggest that lazy evaluation is well-suited for resource-intensive,
complex workflows, while non-lazy evaluation is more effective
for latency-sensitive workloads and repetitive operations. Given
these findings, a hybrid execution strategy emerges as a compelling
solution to optimize performance across diverse workloads. For
instance, lazy evaluation can be employed for preprocessing stages
involving heavy transformations, while non-lazy execution can be
activated for subsequent stages requiring immediate results or

iterative feedback. This combination can balance the trade-offs
between resource utilization and latency, ensuring both efficiency
and responsiveness.

4. CONCLUSIONS

This paper evaluated lazy and non-lazy execution strategies in
Spark, highlighting their strengths across different scenarios. The
lazy evaluation demonstrated superior performance for workloads
with complex workflows or a few actions by leveraging global
optimization and minimizing redundant computations. In contrast,
non-lazy evaluation excelled in workloads simple workflows with
multiple actions on large datasets by leveraging cached data in
memory. These findings emphasize the importance of selecting an
evaluation strategy based on workload characteristics such as data
volume and query complexity. This study uniquely bridges the gap
in the literature by offering a systematic comparison of lazy and
non-lazy strategies, complemented by actionable hybrid solutions.

In the future work, we aim to explore the impact of lazy and
non-lazy evaluation strategies on resource utilization, particularly
memory and CPU efficiency. We also plan to evaluate their
performance in distributed environments with varying cluster
configurations. These efforts aim to assist in optimizing Spark
performance across diverse real-world deployment scenarios,
contributing to the broader field of big data processing and
distributed computing.

SMA 2024 Conference Proceeding | 18

ACKNOWLEDGMENTS

This research was supported by Vietnam National Coal and
Mineral Industries Group under grant number KC.02.D07-23/21-
25. This research was supported by Hung Yen University of
Technology and Education wunder the grant number
UTEHY.L.2023.02.

REFERENCES

[1] Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker, S., & Stoica, I. (2016).
Apache Spark: A Unified Engine for Big Data Processing. Communications of
the ACM, 59(11), 56-65. DOL: http://dx.doi.org/10.1145/2934664

[2] Armbrust, M., Xin, R. S, Lian, C., Huai, Y., Liu, D., Bradley, J., & Zaharia, M.
(2015). Spark SQL: Relational Data Processing in Spark. In Proceedings of the
2015 ACM SIGMOD International Conference on Management of Data
(SIGMOD '15), 1383-1394. DOI: http://dx.doi.org/10.1145/2723372.2742797

[3] Laskowski, J. (2023). Apache Spark can be eagerly evaluated too: Commands
on waitingforcode.com. Retrieved from
https://www.waitingforcode.com/apache-spark-sql/apache-spark-eagerly-
evaluated-commands/read.

[4] Karau, H., & Warren, R. (2017). High Performance Spark: Best Practices for
Scaling and Optimizing Apache Spark. O'Reilly Media, Inc. Retrieved from
https://www.oreilly.com/library/view/high-performance-
spark/9781491943205/

[5] MSSQLTips. (2023). Apache Spark’s DAG & Lazy Evaluation: Optimizing
Performance. Retrieved from
https://www.mssqltips.com/sqlservertip/7897/apache-sparks-dag-lazy-
evaluation-optimizing-performance/

[6] Scaler Topics. (2023). Lazy Evaluation in Spark. Retrieved from

https://www.scaler.com/topics/lazy-evaluation-in-spark/

The 13th International Conference on Smart Media and Applications

SMA 2024 Conference Proceeding | 19

